Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Laser cooling is used to produce ultracold atoms and molecules for quantum science and precision measurement applications. Molecules are more challenging to cool than atoms due to their vibrational and rotational internal degrees of freedom. Molecular rotations lead to the use of type-II transitions ( ) for magneto-optical trapping (MOT). When typical red detuned light frequencies are applied to these transitions, sub-Doppler heating is induced, resulting in higher temperatures and larger molecular cloud sizes than realized with the type-I MOTs most often used with atoms. To improve type-II MOTs, Jarviset al(2018Phys. Rev. Lett.120083201) proposed a blue-detuned MOT to be applied after initial cooling and capture with a red-detuned MOT. This was successfully implemented (Burauet al2023Phys. Rev. Lett.130193401; Jorapuret al2024Phys. Rev. Lett.132163403; Liet al2024Phys. Rev. Lett.132233402), realizing colder and denser molecular samples. Very recently, Hallaset al(2024 arXiv:2404.03636) demonstrated a blue-detuned MOT with a ‘1+2’ configuration that resulted in even stronger compression of the molecular cloud. Here, we describe and characterize theoretically the conveyor-belt mechanism that underlies this observed enhanced compression. We perform numerical simulations of the conveyor-belt mechanism using both stochastic Schrödinger equation and optical Bloch equation approaches. We investigate the conveyor-belt MOT characteristics in relation to laser parameters,g-factors and the structure of the molecule, and find that conveyor-belt trapping should be applicable to a wide range of laser-coolable molecules.more » « lessFree, publicly-accessible full text available April 1, 2026
-
On November 28-29, 2023, Northwestern University hosted a work- shop titled “Towards Re-architecting Today’s Internet for Surviv- ability” in Evanston, Illinois, US. The goal of the workshop was to bring together a group of national and international experts to sketch and start implementing a transformative research agenda for solving one of our community’s most challenging yet important tasks: the re-architecting of tomorrow’s Internet for “survivability”, ensuring that the network is able to fulfill its mission even in the presence of large-scale catastrophic events. This report provides a necessarily brief overview of two full days of active discussions.more » « less
-
Polyatomic molecules have rich structural features that make them uniquely suited to applications in quantum information science1–3, quantum simulation4–6, ultracold chemistry7 and searches for physics beyond the standard model8–10. However, a key challenge is fully controlling both the internal quantum state and the motional degrees of freedom of the molecules. Here we demonstrate the creation of an optical tweezer array of individual polyatomic molecules, CaOH, with quantum control of their internal quantum state. The complex quantum structure of CaOH results in a non-trivial dependence of the molecules’ behaviour on the tweezer light wavelength. We control this interaction and directly and non-destructively image individual molecules in the tweezer array with a fidelity greater than 90%. The molecules are manipulated at the single internal quantum state level, thus demonstrating coherent state control in a tweezer array. The platform demonstrated here will enable a variety of experiments using individual polyatomic molecules with arbitrary spatial arrangement.more » « less
-
Abstract Given a set$$S=\{x^2+c_1,\dots,x^2+c_s\}$$defined over a field and an infinite sequence$$\gamma$$of elements ofS, one can associate an arboreal representation to$$\gamma$$, generalising the case of iterating a single polynomial. We study the probability that a random sequence$$\gamma$$produces a “large-image” representation, meaning that infinitely many subquotients in the natural filtration are maximal. We prove that this probability is positive for most setsSdefined over$$\mathbb{Z}[t]$$, and we conjecture a similar positive-probability result for suitable sets over$$\mathbb{Q}$$. As an application of large-image representations, we prove a density-zero result for the set of prime divisors of some associated quadratic sequences. We also consider the stronger condition of the representation being finite-index, and we classify allSpossessing a particular kind of obstruction that generalises the post-critically finite case in single-polynomial iteration.more » « less
-
Open dumping and burning of solid waste are widely practiced in underserved communities lacking access to solid waste management facilities; however, the generation of microplastics from these sites has been overlooked. We report elevated concentrations of microplastics (MPs) in soil of three solid waste open dump and burn sites: a single-family site in Tuttle, Oklahoma, USA, and two community-wide sites in Crow Agency and Lodge Grass, Montana, USA. We extracted, quantified, and characterized MPs from two soil depths (0-9 cm and 9-18 cm). The abundance of particles found at the three sites (35,000 to 69,200 particles kg-1 soil) equals or exceeds reported concentrations from currently understood sources of MPs including biosolids application and other agricultural practices. Attenuated total reflectance Fourier transformed infrared (ATR-FTIR) identified polyethylene as the dominant polymer across all sites (46.2%-84.8%). We also detected rayon (≤11.5%), polystyrene (up to 11.5%), polyethylene terephthalate (≤5.1), polyvinyl chloride (≤4.4%), polyester (≤3.1), and acrylic (≤2.2%). Burned MPs accounted for 76.3 to 96.9% of the MPs found in both community wide dumping sites. These results indicate that solid waste dumping and burning activities are a major source of thermally oxidized MPs for the surrounding terrestrial environment with potential to negatively affect underserved communities.more » « less
-
Ultracold polyatomic molecules are promising candidates for experiments in quantum science and precision searches for physics beyond the Standard Model. A key requirement is the ability to achieve full quantum control over the internal structure of the molecules. In this work, we established coherent control of individual quantum states in calcium monohydroxide (CaOH) and demonstrated a method for searching for the electron electric dipole moment (eEDM). Optically trapped, ultracold CaOH molecules were prepared in a single quantum state, polarized in an electric field, and coherently transferred into an eEDM-sensitive state where an electron spin precession measurement was performed. To extend the coherence time, we used eEDM-sensitive states with tunable, near-zero magnetic field sensitivity. Our results establish a path for eEDM searches with trapped polyatomic molecules.more » « less
An official website of the United States government

Full Text Available